Consultas: Radiopropagación









INTRODUCCIÓN.


Muchos consideran que la radio nace a principios del siglo XX, cuando Guillermo Marconi inventa la telegrafía sin hilos, otros no consideran a este hecho como la verdadera invención de la radio, si no que son mas precisos y consideran al verdadero inventor de la radio al norteamericano Lee de Forest cuando este inventa el "audion".

La idea de fondo era lograr que, a través de ondas electromagnéticas, se pudiera enviar y recibir voz, música y sonidos de cualquier tipo.

Si tomamos a la invención de Marconi como camino obligado de todo el proceso de desarrollo de la radio, debemos retroceder en el tiempo y remontarnos en la historia y hablar de George Louis Lesage, un físico suizo de padres franceses nacido en Ginebra en 1724.

El Sr. Lesage, médico y filósofo, obtuvo su doctorado en París, se dedicó por un tiempo a la enseñanza de las ciencias.

Fue hasta el año 1774 que crea su "primer telégrafo" después de madurar la idea por 14 años. Este aparato era un conjunto de 24 hilos (coincide con el número de letras del abecedario) que en la estación de transmisión se ponían en contacto mediante un conductor electromagnético, enviando de esta manera señales a la los electrómetros de la estación receptora.

Pero, fue el Sr. Claude Chappe, de origen francés y nacido en Burton en 1763, quien construye el que se considera el primer "telégrafo de señales" o "primer telégrafo óptico"

El Sr. Chappe, que inicialmente se dedicó a la carrera eclesiástica y que después dejó para dedicarse a la investigación, inventa en 1791 un aparato con el cual se podía enviar mensajes a una distancia de hasta 20 Kilómetros de distancia. El Sr. Chappe presentó su creación en la Convención Nacional con mucho éxito, logrando que un año más tarde un encargo para unir las ciudades de Paris y Lille. Ya en 1800 Francia había instalado 29 de estas líneas uniendo a casi todos sus departamentos y en cinco años más, ya se utilizaba en toda Europa.

Lamentablemente fue en esos momentos que el Sr. Chappe se dio cuenta que, un siglo antes, un ciudadano inglés de apellido Hooke ya había expuesto ante la Royal Society un proyecto similar. Después de esto, se suicidó.

El 16 de diciembre de 1795, la Academia de Ciencias Naturales y Artes de Barcelona ya tenía conocimiento de una "Memoria sobre electricidad aplicada a la telegrafía" teniendo como autor al Sr. Francisco Salva, profesor del Instituto Clínico de Barcelona. Esta "Memoria" contenía la descripción del primer telégrafo eléctrico, y la Gaceta de Madrid, un año después, informaba de una prueba exitosa.

Por lo anteriormente dicho, el autor se plantea la siguiente interrogante:

¿Cuáles son los principios fundamentales de la Radio Propagación?

Así mismo se plantean los siguientes objetivos general y específicos:


Objetivo General:

Determinar los principios básicos de la Radio Propagación.


Objetivos Específicos:

- Especificar como se hace la transmisión de ondas
- Determinar los parámetros de las ondas electromagnéticas
- Clasificar las ondas electromagnéticas, de acuerdo a los parámetros que la definen
- Aclarar que es la Zona de Fresnel
- Enunciar la formula genérica para el calculo de las zonas de Fresnel
- Explicar en que consiste la difracción de Fresnel
- Explicar los tipos de ondas que utilizan el medio terrestre para su propagación
- Explicar en que consiste la difusión, reflexión y refracción respectivamente
- Clasificar las ondas en función a la gama de frecuencia




LA TRANSMISIÓN DE LAS ONDAS


Cualquier transmisión tanto de radio como de televisión se hace a través de las denominadas Ondas electromagnéticas. Este tipo de ondas se caracterizan porque están formadas, como su nombre indica por la conjunción de un campo eléctrico y otro magnético. La unión de estos campos es la que permite que este tipo de ondas se pueda transmitir por el espacio. Este tipo de ondas se propaga por el espacio (independientemente de cuál sea su frecuencia) a la velocidad de la luz; a la particularidad que tiene este tipo de ondas de viajar por el espacio es a lo que se le denomina técnicamente como propagación de las ondas electromagnéticas.

Una onda electromagnética se define con tres parámetros:

a. La frecuencia: nos define el número de ondas que se transmiten en un segundo.
b. La velocidad: que como decíamos es siempre la misma ya que es independiente de la frecuencia. Esta velocidad es igual a la velocidad de la luz (300.000 kilómetros por segundo).
c. La longitud de onda: que es el resultado de dividir la velocidad de propagación (la velocidad de la luz) por la frecuencia. El resultado viene expresado en metros.

La siguiente tabla muestra la clasificación de las ondas electromagnéticas a tenor de los tres parámetros antes enunciados:







Podemos hacer otro tipo de clasificaciones, como la que se suele hacer con las ondas de radio (Ondas largas, ondas cortas y ondas medias), para no alargar el tema no entraremos en estas clasificaciones.





La transmisión de las ondas: principios










Una onda electromagnética la podemos crear y transmitir, luego, con los aparatos adecuados, la podemos recibir y utilizar. Para poner una onda electromagnética en el espacio necesitamos una serie de elementos: vamos a poner como ejemplo una emisora de radio (pero sería aplicable a cualquier otro tipo de emisión), en este caso lo que queremos transmitir es la voz; nuestra voz, al estar delante del micrófono, se convierte en corrientes eléctricas que un emisor se encarga de convertir en corrientes de Radio Frecuencia (R.F.), estas corrientes se aplican a una antena de emisión (que es la encargada de convertir las corrientes del emisor en ondas electromagnéticas).

Estas ondas viajan por el espacio, si dentro del alcance de estas ondas ponemos un receptor, la antena de este receptor se encarga de convertir esas ondas electromagnéticas en débiles corrientes eléctricas; estas corrientes el receptor las amplifica y las trata de forma conveniente para que sean capaces de excitar el altavoz.

El transmisor mas sencillo que podemos construir se basaría en un circuito electrónico llamado oscilador, que en este caso debería oscilar dentro de la gama de las R.F.; esa R.F., aplicada a una antena, generaría ondas electromagnéticas que se propagarían por el espacio. Pero este sencillo transmisor no nos serviría de mucho porque el receptor (dependiendo del tipo de receptor que elijamos) o bien nos emite un pitido constante o bien no emite ningún tipo de sonido. Vamos a poner por caso que yo, de alguna manera, hago que la señal de R.F. se corte durante unos instantes, a la antena llegarán trenes de pulsos de R.F. que serán irradiados.











Si yo tengo un receptor de los que emiten un pitido, cuando está presente la señal de R.F., conseguiré "oir" las pulsaciones que alguien haga en el manipulador de mi emisora; estamos en el principio de la transmisión Morse por lo que puedo transmitir mensajes.

Esta sencilla emisora Morse que acabo de diseñar es muy probable que no me llegase a funcionar porque: por un lado, al conectar el oscilador directamente a la antena, la potencia de salida sería muy pequeña y la potencia de salida va a estar ligada íntimamente al alcance de la emisora: a mas potencia mas alcance; por otro lado la antena absorbe una potencia un poco grande lo que hará que el oscilador se esté corriendo continuamente de frecuencia.

Para salvar estos inconvenientes, entre el oscilador y la antena, se colocan una serie de amplificadores, especiales para estos casos, que se llaman amplificadores de R.F. A cada amplificador de R.F. se le denomina etapa, un emisor tendrá tantas etapas como sean necesarias para dar su potencia de salida. A la primera etapa, la que va inmediatamente detrás del oscilador, se le denomina amplificador separador o buffer; a las etapas que siguen la buffer se le va denominando consecutivamente primera etapa de potencia, segunda etapa de potencia, etc. Al amplificador final, el que va conectado a la antena, se le denomina amplificador (o etapa) final de potencia.

Una onda electromagnética la podemos crear y transmitir, luego, con los aparatos adecuados, la podemos recibir y utilizar. Para poner una onda electromagnética en el espacio necesitamos una serie de elementos: vamos a poner como ejemplo una emisora de radio (pero sería aplicable a cualquier otro tipo de emisión), en este caso lo que queremos transmitir es la voz; nuestra voz, al estar delante del micrófono, se convierte en corrientes eléctricas que un emisor se encarga de convertir en corrientes de Radio Frecuencia (R.F.), estas corrientes se aplican a una antena de emisión (que es la encargada de convertir las corrientes del emisor en ondas electromagnéticas).






La manipulación de las ondas de R.F.



En el ejemplo propuesto anteriormente del transmisor Morse, nos debe quedar claro que la onda del oscilador en sí no nos transmitiría nada; cuando manipulamos esa onda es cuando conseguimos que se transmita información. A la onda que genera el oscilador y que nos sirve para llevar la información es a lo que se denomina onda portadora.

Decíamos antes que si pusiésemos solo la onda portadora en la antena, en los receptores podía ocurrir o que no se escuchase nada o que se oyese un pitido (dependiendo del tipo de receptor).

Esto se produce porque en el receptor otro oscilador está trabajando a la misma frecuencia que el oscilador del transmisor, a esta adecuación de frecuencias es a lo que se le conoce como sintonización del receptor. Cuando se produce la sintonización, ambos osciladores están en la misma frecuencia, en el receptor una de las etapas amplificadoras se va a encargar te tratar la onda portadora, bien anulándola (caso del receptor con sonido nulo), bien amplificando solo la portadora que está sintonizada y anulando el resto de las que llegan a la antena (receptor con el pitido).

El transmisor que nos ha servido de ejemplo sería el típico transmisor de onda continua, la manipulación sobre la portadora se hace poniendo en antena trozos mas o menos grandes de esta portadora. Este tipo de transmisión se suele utilizar en comunicaciones a largas distancias.

Una variante de este tipo de transmisión es la transmisión por onda continua modulada, empleada principalmente en comunicaciones de emergencia; la única diferencia entre los dos estriba en que en este último tipo se utilizan dos osciladores: el de R.F., que genera la portadora, y el de Audio Frecuencia (A.F.). Las señales de los osciladores, en este tipo de transmisores se mezclan de forma que la señal de A.F. se monta sobre la señal de R.F. (modulación).

Lo que se transmite son trozos de portadora convenientemente modulada. En el dibujo se la izquierda se ha intentado representar la señal que tendríamos en la etapa final de R.F., donde observaríamos "trozos de portadora (convenientemente modulada) y espacios de silencio o ausencia de portadora (los trazos grises y azul no se verían, se han representado para que veamos como se modula la señal original, la señal de salida sería únicamente el trazo rojo; esto es aplicable también a los ejemplos siguientes).










Para la transmisión del sonido y la imagen se utilizan dos métodos : la transmisión por modulación de amplitud y la transmisión por modulación de frecuencia. La transmisión por modulación de amplitud no difiere de la transmisión por onda continua modulada, en este caso el oscilador de A.F. se sustituye por los sonidos de este tipo recogidos por un micrófono, un dispositivo de música, una cámara, etc.

La señal captada por estos dispositivos se amplifica convenientemente y se utilizar para modular la portadora; si enganchásemos un osciloscopio en la etapa final de R.F. veríamos una señal parecida a la de la derecha, En este caso, en la transmisión, siempre tenemos portadora, cuando el micrófono capte un sonido, la portadora se modulará (tramos mas estrechos) y en los silencios la portadora se transmitirá con toda su amplitud.









La transmisión por modulación de frecuencia consiste en modular la portadora de forma que la señal de entrada le haga aumentar o disminuir su frecuencia (no su amplitud como en el caso anterior). En este caso, también, la portadora se está irradiando continuamente por la antena: en los silencios la portadora saldrá con la frecuencia del oscilador , cuando el dispositivo de sonido o imagen capte una señal, ésta modulará la portadora haciéndole variar su frecuencia.

Un osciloscopio colocado en la etapa final de R.F. vería "acortamientos y estiramientos continuos" de la portadora.(EN este gráfico, el tramo azul, sí forma parte de la señal, se ha representado así para resaltar la modulación).











Zona de Fresnel



Tanto en óptica como en comunicaciones por radio o inalámbricas, la zona de Fresnel es una zona de despeje adicional que hay que tener en consideración además de haber una visibilidad directa entre las dos antenas.

Este factor deriva de la teoría de ondas electromagnéticas respecto de la expansión de las mismas al viajar en el espacio libre. Esta expansión resulta en reflexiones y cambios de fase al pasar sobre un obstáculo. El resultado es un aumento o disminución en el nivel de intensidad de señal recibido. Debiendo considerar la curvatura de la tierra(K), que generalmente puede tomar valores de K=2/3 (peor caso) y K=4/3(caso óptimo)

En la óptica y comunicaciones por radio, una zona de Fresnel (pronunciada como zona FRA-nel, de origen francés), nombrada en honor del físico Auguste Jean Fresnel, es uno de los elipsoides de revolución concéntricos teóricamente infinitos que definen volúmenes en el patrón de radiación de la abertura circular (generalmente). Fresnel divide resultado en zonas de la difracción por la abertura circular.

La sección transversal de la primera zona de Fresnel es circular. Las zonas subsecuentes de Fresnel son anulares en la sección transversal, y concéntricas con las primeras. El concepto de las zonas de Fresnel se puede también utilizar para analizar interferencia por obstáculos cerca de la trayectoria de una viga (antena) de radio. Esta zona se debe determinar primero, para mantenerla libre de obstrucciones.

La obstrucción máxima permisible para considerar que no hay obstrucción es el 40% de la primera zona de Fresnel. La obstrucción máxima recomendada es el 20%. Para el caso de radiocomunicaciones depende del valor de K (curvatura de la tierra) considerando que para un K=4/3 la primera zona de fresnel debe estra despejada al 100% mientras que para un estudio con K=2/3 se debe tener despejado el 60% de la primera zona de Fresnel.

Para establecer las zonas de Fresnel, primero debemos determinar la línea de vista de RF ("RF LoS", en inglés), que en términos simples es una línea recta entre la antena transmisora y la receptora. Ahora la zona que rodea el RF LoS es la zona de Fresnel. El radio de la sección transversal de la primera zona de Fresnel tiene su máximo en el centro del enlace. En este punto, el radio r se puede calcular como sigue:









r = radio en metros (m).
d = distancia en kilómetros (km).
f = frecuencia transmitida en megahercios (MHz).
La fórmula genérica de cálculo de las zonas de Fresnel es:








Donde:

rn = radio de la enésima zona de Fresnel.
d1 = distancia desde el transmisor al objeto en km.
d2 = distancia desde el objeto al receptor en km.
d = distancia total del enlace en km.
f = frecuencia en MHz.




La Difracción de Fresnel

La condición de validez es algo débil y permite que los parámetros de dimensión del obstáculo tengan valores comparables: la apertura es pequeña comparada con el camino óptico. De esta forma es interesante investigar en el comportamiento del campo eléctrico sólo en una pequeña porción de área cercana al origen de la fuente luminosa, es decir para valores de x e y mucho más pequeños que z, en este caso se puede asumir que
, esto viene a significar que:







De esta forma, al igual que la difracción de Fraunhofer, la difracción de Fresnel ocurre debido a la curvatura del frente de onda. Para la difracción Fresnel el campo eléctrico en un punto ubicado en (x,y,z) está dado por:











Esta es la integral de difracción de Fresnel; y viene a significar que si la aproximación de Fresnel es válida , el campo propagado es una onda esférica, originada en la apertura y moviéndose a lo largo del eje Z. La integral modula la amplitud y la fase de una onda esférica. La solución analítica de esta expresión es sólo posible en casos muy raros.





PROPAGACIÓN TERRESTRE



Ondas aéreas

Son aquellas que parten de la antena del emisor y llegan hasta la antena del receptor a través del propio aire pero sin llegar a la ionosfera. Según su trayectoria pueden ser: Ondas directas, reflejadas y otras influenciadas por ciertos efectos como son por refracción troposférica o por difracción.

Onda directa

Tocar terreno ni ionosfera. La atenuación es mínima, siendo únicamente la que se produce por el espacio abierto o agentes meteorológicos (lluvia, nieve,... ) Es la típica de frecuencias superiores a 30MHz (V-U-SHF).

Un claro ejemplo lo tenemos en los emisores de radiodifusión FM y TV, en los que para conseguir máximas distancias es imprescindible tener la antena emisora lo más alta posible (o ubicaciones de repetidores o reemisores en cotas altas del terreno). Otro ejemplo lo tenemos en los radioenlaces de microondas (SHF o frecuencias >3GHz) en los que es imprescindible que haya visión directa para establecerse la comunicación.

















Onda reflejada

Llega al receptor después de reflejarse en la tierra (o mar). Sufre gran atenuación por la propia naturaleza del terreno y depende mucho de éste. En ocasiones favorece el establecimiento de la comunicación a largas distancias.



















Refracción Troposférica

Cuando una capa de aire frío se encuentra entre dos capas de aire caliente, puede ocurrir que la onda de refracte, esto es, que modifique su trayectoria.

















Difracción (filo de la navaja)


Cuando entre el emisor y el receptor se encuentra una montaña o cordillera, puede ocurrir que las ondas modifiquen su trayectoria debido a la naturaleza del terreno (temperatura, humedad, etc) consiguiéndose incluso, niveles de ganancia, en lugar de atenuaciones.

















Ondas de radio u ondas hertzianas.


Las ondas de radio u ondas Hertzianas son ondas electromagnéticas. Como una onda de radio es una vibración, al cabo de un período, la onda habrá recorrido una distancia llamada longitud de onda. La longitud de onda es una característica esencial en el estudio de la propagación; para una frecuencia dada depende de la velocidad de propagación de la onda.

El ámbito de las frecuencias de las ondas de radio se extiende de algunas decenas de kiloherzios hasta los límites de los infrarrojos.

Las siguientes son abreviaciones para rangos de frecuencias de radio: ELF (extremely low frequencies) de 30 a 3000 Hz, VLF (very low frequencies) de 3 a 30 KHz, LF (low frequencies) de 30 a 300 kHz, MF (medium frequencies) de 0.3 a 3 MHz, HF (high frequencies) de 3 a 30 MHz, VHF (very high frequencies) de 30 a 300 MHz, UHF (ultra high frequencies) por arriba de los 300 Mhz, y por último, SHF y EHF




Formas de propagación.



Las ondas Hertzianas se propagan en dos formas:


En el espacio libre (por ejemplo, propagación irradiada alrededor de la tierra):
Las ondas causadas por la caída de una piedra en la superficie de un estanque se propagan como círculos concéntricos. La onda de radio emitida por la antena isotrópica (es decir, radiante de manera uniforme en todas las direcciones del espacio) puede ser representada por una sucesión de esferas concéntricas. Imagínese una burbuja que se infla muy rápidamente, a la velocidad de la luz, muy cerca de 300,000 km por segundo. Al cabo de un segundo la esfera tiene 600,000 km de diámetro. Si el medio de propagación no es isotrópico y homogéneo, el frente de la onda no será una esfera.

En líneas (propagación guiada, en un cable coaxial o en una guía de onda):
En espacio libre, cuanto más se aleje de la antena, la intensidad del campo electromagnético irradiado es más débil. Esta variación es regular en un medio homogéneo, en el vacío, por ejemplo. En un medio no homogéneo, como por ejemplo, en la superficie de la Tierra , numerosos fenómenos contradicen esta norma: es frecuente que la onda recibida interfiere directamente con un reflejó de esta onda sobre el suelo, un obstáculo o sobre una capa de la ionosfera.

Para una buena recepción, es necesario que el campo eléctrico de la onda captada tenga un nivel suficiente. El valor mínimo de este nivel depende de la sensibilidad del receptor, de la ganancia de la antena y la comodidad de escucha deseada. En el caso de las transmisiones numéricas la comodidad de escucha es sustituida por el nivel de fiabilidad requerido para la transmisión. La intensidad del campo eléctrico se mide en voltio/metro.





Propagación de las ondas de radio: difusión, reflexión y refracción.


Una onda de radio se distingue de una radiación luminosa por su frecuencia: algunas decenas de kiloherz o gigahertz para la primera, algunos centenares de térahertz para el segundo. Obviamente la influencia de la frecuencia de la onda es determinante para su propagación pero la mayoría de los fenómenos de la óptica geométrica (por ejemplo, la reflexión) se aplican también en la propagación de las ondas hertzianas.

En la práctica es frecuente que dos o varios fenómenos se apliquen simultáneamente al trayecto de una onda: reflexión y difusión, difusión y refracción... Estos fenómenos aplicados a las ondas radioeléctricas permiten a menudo establecer conexiones entre puntos que no están en vista directa.



Difusión.

El fenómeno de difusión puede producirse cuando una onda encuentra un obstáculo cuya superficie no es perfectamente plana y lisa. Es el caso de las capas ionizadas de la atmósfera, de la superficie del suelo en las regiones onduladas (para las longitudes de ondas más grandes) o de la superficie de los obstáculos (acantilados, bosques, construcciones...) para las ondas ultracortas (sobre algunos centenares de megaherz). Como en la óptica, la difusión depende de la relación entre la longitud de onda y las dimensiones de los obstáculos o irregularidades a la superficie de los obstáculos reflejantes. Estos últimos pueden también cambiar por las cortinas de lluvia (en hiperfrecuencias) o las zonas ionizadas de la alta atmósfera en las auroras polares (borealis y australis, Northern and Southern Lights) .




Reflexión y refracción.


La información necesaria para una conexión que utiliza una reflexión sobre la capa E de la ionosfera es:

 La potencia del emisor;

 el diagrama de radiación de la antena;

 la posición geográfica de cada una de las dos estaciones y también;

 la capacidad de la capa E de la ionosfera para reflejar las ondas de radio.



Es el SSN (el término histórico es número de Wolf, que no depende de quien determina el número de manchas solares, veremos esto en la parte II de estas notas), y también la fecha y la hora del día del intento de conexión que permitirá al programa informático calcular las posibilidades de propagación ionosférica. Se conocerá la probabilidad de establecer la conexión en función de la frecuencia para un reporte de señal sobre ruido dado

La refracción es el cambio en la dirección de propagación de una onda, cuando pasa de un medio a otro en el que su velocidad es distinta, o cuando hay una variación espacial de la velocidad de la onda en el mismo medio.

El clima espacial condiciona la ionización en las distintas capas de la ionosfera, que cambia con la fecha y la hora. En el capítulo sobre propagación y clima espacial hablaremos de la refracción de las ondas de radio en la ionosfera, capacidad de la ionosfera, que permite contactos DX, de frecuencias máximas utilizables MUF y frecuencias mínimas utilizables LUF, de SWF (atenuación o pérdida de intensidad, también absorción, en Onda Corta, short wave fade, en inglés). Hablaremos también del número de Wolf.




Interferencia de dos ondas de radio


Es necesario distinguir la interferencia causada por dos señales independientes, en frecuencias muy cercanas, aparece el fenómeno de interferencia cuando la onda directa irradiada por un emisor se recibe al mismo tiempo que una onda reflejada. En este último caso, los tiempos de recorrido de las dos ondas son diferentes y las dos señales recibidas son defasadas. Pueden entonces presentarse varios casos:

 defasamiento igual a un múltiplo del período: las señales están en fase y se refuerzan mutuamente. Sus amplitudes se añaden.

 defasamiento de un múltiplo de un semi-período: las señales están en oposición de fase y la amplitud de la más débil se deduce de más fuerte. Si las dos señales tienen la misma amplitud, el nivel de la señal resultante es nulo.

 defasamiento cualquiera: la amplitud de la señal que resulta es intermedia entre estos dos valores extremos.

Los fenómenos de interferencias pueden ser muy molestos cuando el tiempo de recorrido de la onda indirecta varía: la amplitud de la señal recibida varía entonces a un ritmo más o menos rápido. El fenómeno de interferencia se utiliza en aplicaciones que cubren numerosos ámbitos: medida de velocidad, radiogoniometría...




Propagación en función de la gama de frecuencia



Ondas kilométricas

Se propagan principalmente muy a baja altitud, por onda de suelo. Su gran longitud de onda permite el rodeo de los obstáculos. Para una misma distancia del emisor, el nivel de la señal recibida es muy estable. Este nivel disminuye tanto más rápidamente cuanto más se eleve la frecuencia. Las ondas de frecuencia muy baja penetran un poco bajo la superficie del suelo o el mar, lo que permite comunicar con submarinos en inmersión. Aplicaciones corrientes: radiodifusión sobre Grandes Ondas (Francia-Inter, RTL...), difusión de las señales horarias (relojes de radiocontroladores)... La potencia de estos emisores es enorme: a menudo varios megavatios para obtener un alcance que puede llegar hasta 1000 km .



Ondas hectométricas

Las estaciones de radiodifusión sobre la banda de las Pequeñas Ondas (entre 600 y 1500 kHz) tienen potencias que pueden llegar hasta varios centenares de kilovatios. Apenas utilizan la onda de suelo para cubrir una zona que no sobrepasa una región francesa pero se benefician después de la puesta del sol de los fenómenos de propagación ionosférica



Ondas decamétricas

Las ondas cortas, bien conocidas por los radioaficionados, permiten conexiones intercontinentales con potencias de algunos milivatios si la propagación ionosférica lo permite ya que la onda de suelo sobre 2 ó 3 MHz apenas lleva más allá de algunas decenas kilómetros. Entre 1 y 30 MHz, la reflexión de las ondas sobre las capas de la ionosfera permite liberarse del problema del horizonte óptico y obtener con un único salto un alcance de varios millares de kilómetros.

Pero estos resultados son muy variables y dependen de los métodos de propagación, el ciclo solar, la hora del día o la temporada. Las ondas decamétricas cedieron el paso a los satélites aunque los cálculos de previsión de propagación permitieran predecir con una buena fiabilidad las horas de apertura, las frecuencias máximas utilizables y el nivel de la señal que se recibirá.



Ondas métricas

Las ondas métricas corresponden a frecuencias incluidas entre 30 y 300 MHz que incluye la banda de radiodifusión FM, las transmisiones VHF de los aviones, la banda radioaficionado de los 2m, 6 m ... se propagan principalmente en línea recta pero consiguen pasar los obstáculos de dimensiones que no superan algunos metros. Se reflejan sobre las paredes, rocas, vehículos y excepcionalmente sobre nubes ionizadas situadas en la capa E, hacia 90 km de altitud lo que permite conexiones por más 1000 km . En tiempo normal, el alcance de una emisora de 10 vatios en una antena omnidireccional es de algunas decenas de kilómetros pero sucede también que el índice de refracción para estas frecuencias haga curvarse hacia el suelo una onda que se habría perdido en el espacio. Son entonces posibles las conexiones con algunos centenares de kilómetros



Ondas decimétricas e hiperfrecuencias

Mientras más aumenta su frecuencia, el comportamiento de esta onda se asemeja al de un rayo luminoso. Los haces hertzianos permiten conexiones a la vista, como el Telégrafo de Casquillo, pero por todo el tiempo y con producciones de información de los mil millones de vez más elevado. Ningún obstáculo de tamaño superior a algunos decímetros debe encontrarse sobre el trayecto del haz.

Estas ondas se reflejan fácilmente sobre obstáculos de algunos metros de dimensión; este fenómeno es explotado por los radares, incluidos los utilizados en los bordes de las carreteras. Y gracias a los reflejos sobre los edificios es posible utilizar un teléfono portátil sin estar en vista directa con la antena de enlace, pero las interferencias entre ondas reflejadas dificulta la comunicación, obligando al usuario a cambiar de lugar o a desplazarse simplemente de algunos metros. Sobre 10 GHz con una potencia de algunos vatios y antenas parabólicas de menos de un metro de diámetro, es posible efectuar conexiones a varios centenares de kilómetros de distancia sirviéndose una elevada montaña como reflector. Arriba de 10 gigahertz, el fenómeno de difusión puede manifestarse sobre nubes de lluvia, permitiendo a la onda alcanzar lugares situados más allá del horizonte óptico



Previsiones de propagación

El nivel de la señal emitida por una estación de emisión (emisora y antena) en un punto del espacio (o de la superficie de la Tierra ) puede calcularse con una buena precisión si se conocen los principales factores que determinan la transmisión. Como ejemplo tomemos dos casos: conexión en vista directa en 100MHz y conexión a gran distancia en 10MHz que utiliza una reflexión sobre la capa E. No efectuaremos obviamente aquí los cálculos.



Conexión directa sobre 100MHz


Se conoce:


 La potencia de salida del emisor;

 El diagrama de radiación de la antena de emisión y en particular la ganancia de ésta en la dirección que nos interesa y su altura con relación al suelo;

 El perfil del terreno entre la estación de emisión y el punto de recepción, teniendo en cuenta la redondez de la Tierra ;

 La distancia entre emisora y no de recepción;

Los programas informáticos más o menos sofisticados permiten hacer rápidamente esta clase de cálculo que puede eventualmente tener en cuenta la conductividad del suelo, las posibilidades de reflexión, etc. Si se añaden las características de la estación de recepción (antena + receptor), se podrá entonces calcular el balance de la conexión, que dará la diferencia de nivel entre la señal útil y el ruido radioeléctrico.



Propagación guiada

Para transportar la energía de alta frecuencia de un punto en otro, no se utiliza un añadido eléctrico ordinario sino una línea de transmisión con las características apropiadas. Esta línea está formada por dos conductores eléctricos paralelos separados por un dieléctrico, muy buen aislante a las frecuencias utilizadas (aire,Teflon polietileno...). Si uno de los conductores esta rodeado por otro, hablamos entonces de línea coaxial.



Ejemplos de líneas de transmisión

 Del emisor a la antena se utilizará un cable coaxial que podrá soportar tensiones de varios centenares o millares de voltios sin distensión eléctrica.

 Entre la antena parabólica y el receptor de televisión por satélite las señales de baja amplitud serán transportadas por un cable coaxial que presentará escasas pérdidas a muy alta frecuencia.

 La antena de un radar utilizado para el control aéreo se conecta a los equipos de detección con ayuda de una guía de onda, sale de tubo metálico dentro del cual se desplaza la onda.

 Sobre ondas cortas los radioaficionados utilizan a veces líneas de dos hilos para alimentar su antena.

 Los circuitos selectivos utilizados en los aparatos que funcionan a muy alta frecuencia (superior a 300 MHz) son muy a menudo líneas.




Formación de una onda en una línea

Un generador conectado a cargo con ayuda de una línea va a causar en cada uno de los dos conductores de la línea la formación de una corriente eléctrica y la formación de una onda que se desplaza en el dieléctrico a una velocidad muy grande. Esta velocidad es inferior a la velocidad de la luz pero sobrepasa frecuentemente 200,000 km/s, lo que implica que, para una frecuencia dada, la longitud de la onda en la línea es más pequeña que en el espacio (longitud de onda = velocidad en el medio/frecuencia)




Ondas progresivas

Cuando la línea se adapta perfectamente al generador y a la carga, la condición se cumple cuando la impedancia de salida del primero y la impedancia de entrada del segundo son iguales a la impedancia característica de la línea, este último es recorrido solamente por ondas progresivas. En este caso ideal la diferencia de potencial entre los conductores y la corriente que circula en éstos tienen el mismo valor cualquiera que sea el lugar donde la medida se efectúa en la línea. Tal línea no irradia, el campo electromagnético producido por la onda progresiva no es perceptible a alguna distancia de la línea.




Ondas estacionarias

Si la condición mencionada anteriormente no se cumple, si la impedancia de la carga es diferente de la impedancia característica de la línea, la línea va entonces a ser el sitio de ondas estacionarias. La tensión medible entre los dos hilos no será ya constante sobre toda la longitud de la línea y van a aparecer:

 máximos de tensión aún llamados vientres de tensión correspondientes a nudos de corriente

 de los mínimos de tensión o nudos de tensión asociados a máximos de corriente (vientres de corriente).

 Este tipo de funcionamiento generalmente se teme si el tipo de ondas estacionarias es elevado. Las sobretensiones que corresponden a los vientres de tensión pueden dañar la emisora, o incluso la línea. Las pérdidas en la línea son elevadas.




Pérdidas en la línea

La resistencia eléctrica (no nula) de los conductores que constituyen la línea y el aislamiento (no infinito) del dieléctrico, causan un debilitamiento de la amplitud de la onda progresiva recorriendo la línea.



Estas pérdidas tienen un doble inconveniente:

 debilitamiento de la señal recibida y disminución de la sensibilidad del sistema de recepción.

 reducción de la potencia transmitida a la antena por el emisor.

Las pérdidas en línea se expresan en dB/m (decibel/metro de longitud) y dependen de numerosos factores:

 naturaleza del dieléctrico (materia, forma...)

 tipo de línea (de dos hilos, bifilar o coaxial)

 frecuencia de trabajo


Ejemplo: un cable coaxial muy común (Ref. RG58A) de una longitud de 30 metros presenta 6dB de pérdidas a 130MHz. Si se aplica una potencia de 100 vatios a la entrada de esta línea se encontrarán 25 vatios a su salida En 6MHz la pérdida solo es de 1 decibel.




CONCLUSIONES


Las ondas electromagnéticas cubren un amplio espectro de frecuencias. Dado que todas las ondas electromagnéticas tienen igual velocidad c (velocidad de la luz) que es una constante es decir no cambia, la relación c= f* l (recordemos que la explicación de velocidad de la onda era el espacio recorrido dividido el tiempo para recorrerlo.

Cuando el espacio es una longitud de onda, el tiempo se llama período "T" y la inversa del período es lo que denominábamos frecuencia de la onda; de allí surge la igualdad anterior, dándole a la velocidad la notación que corresponde por ser la velocidad de la luz) define todo el espectro posible, abarcando desde las ondas de radio de baja frecuencia y gran longitud de onda, las cuales son ondas electromagnéticas producidas por cargas que oscilan en una antena transmisora, las ondas de luz con frecuencias mayores (cada color de la luz blanca corresponde a una longitud de onda determinada) se producen cuando determinados electrones oscilan dentro de los sistemas atómicos.

Las ondas electromagnéticas fuera del campo visible como las ultravioletas, los rayos x, los rayos g , rayos cósmicos, que son vibraciones de otros electrones, o desaceleraciones de los mismos.

Veamos cada una las diferentes ondas en orden decreciente de su longitud de onda y por lo tanto, orden creciente de su frecuencia, y como se producen:

 Ondas de radio, son el resultado de la aceleración de cargas a través de alambres conductores. Son generados por dispositivos electrónicos.

 Microondas que son ondas de radio de longitud corta también generadas por dispositivos electrónicos, se utilizan en sistemas de radar y para hornos a microondas.

 Ondas infrarrojas llamadas también térmicas, llegan hasta la luz visible (el rojo del espectro), se producen por la vibración de los electrones de las capas superiores de ciertos elementos, estas ondas son absorbidas fácilmente por la mayoría de los materiales. La energía infrarroja que absorbe una sustancia aparece como calor, ya que la energía agita los átomos del cuerpo, e incrementa su movimiento de vibración o translación, lo cual da por resultado un aumento de la temperatura.

 Ondas visibles, son la parte del espectro electro-magnético que puede percibir el ojo humano. La luz se produce por la disposición que guardan los electrones en los átomos y moléculas. Las diferentes longitudes de onda se clasifican en colores que varían desde el violeta el de menor longitud de onda hasta el rojo el de mayor longitud de onda (de 4 a 7x10-7). La máxima percepción del ojo humano se produce en la longitud de onda del amarillo-verdoso.

 Ondas ultravioletas, que se producen por vibraciones de mayor frecuencia, producidas por ejemplo en el sol.

Rayos X cuya fuente más común es la desaceleración de electrones que viajan a altas velocidades (alta energía) al chocar en un bombardeo de un blanco metálico.


Cabe aclarar que estas no son todas las conclusiones obtenidas, pero si las mas importantes.

0 comentarios: